CSES - Datatähti 2018 alku - Results
Submission details
Task:Bittijono
Sender:HeikkiSimojoki
Submission time:2017-10-15 23:01:07 +0300
Language:Python3
Status:READY
Result:0
Feedback
groupverdictscore
#10
#20
#30
#40
Test results
testverdicttimegroup
#1--1details
#20.08 s1details
#30.07 s1details
#40.09 s1details
#5ACCEPTED0.08 s1details
#6ACCEPTED0.07 s1details
#7ACCEPTED0.07 s1details
#8ACCEPTED0.09 s1details
#9ACCEPTED0.06 s1details
#10ACCEPTED0.07 s1details
#11ACCEPTED0.09 s2details
#12ACCEPTED0.09 s2details
#13ACCEPTED0.39 s2details
#14ACCEPTED0.07 s2details
#15ACCEPTED0.39 s2details
#16--2details
#17--2details
#18ACCEPTED0.37 s2details
#19ACCEPTED0.34 s2details
#20ACCEPTED0.60 s2details
#21--3details
#22--3details
#23--3details
#24--3details
#25--3details
#26--3details
#27--3details
#28--3details
#29--3details
#30--3details
#31--4details
#32--4details
#33--4details
#34--4details
#35--4details
#36--4details
#37--4details
#38--4details
#39--4details
#40--4details

Code

# Maximum subset amounts for different lengths of binary. Generated from a previous, failed attempt at solving this problem
optimization = [
1,
3,
6,
11,
20,
36,
59,
99,
172,
302,
486,
809,
1400,
2493,
3987,
6611,
11404,
20430,
33046,
54466,
93430,
166513,
276569,
452193,
769692
]

# Helper global variables for catalog_subsets()
subsets = set()
turns = None

# A single node in the binary tree, where the root node is the first binary digit from left. From there on out going left means skipping a digit,
# and going right means including it. This means all possible subsets are paths from the root node to a leaf node
class Node:
    l = None
    r = None
    b = None

# Gets all the subsets of certain length(stored in global variable 'turns') from a binary tree described above and stores them into a global variable
def catalog_subsets(node, bits=()):
    global subsets

    # Do we have all the bits we need
    if len(bits) == turns:
        subsets.add(bits)
        return

    #If this is not a leaf node
    if node.l is not None:
        #Only add our bit to the rightmost path
        catalog_subsets(node.l, bits)
        catalog_subsets(node.r, bits + (node.b,))
    else:
        #If we're a leaf node, and we need ony one bit more, add it and submit to subsets
        if len(bits) == turns - 1:
            subsets.add(bits + (node.b,))

# Returns the total number of subsets in a binary tree
def numSubSets(node):
    global subsets
    global turns

    depth = 0
    node1 = node
    subs = 2

    #Measure the depth
    while node1 is not None:
        node1 = node1.l
        depth = depth + 1

    # Loop through all the possible subset lengths, and count them all up(Assumed that all binary trees have at least one 1 and one 0, sorry, really needed the optimization)
    for i in range(2, depth + 1):
        subsets = set()
        turns = i
        catalog_subsets(node)
        subs = subs + len(subsets)
    return subs

# Generates a binary tree from a list of bits
def gen_tree(bits):
    node = Node()
    node.b = bits[0]

    if len(bits) != 1:
        
        node.l = gen_tree(bits[1:])
        node.r = gen_tree(bits[1:])

    return node

#returns a smallest bitset with excactly n subsets
def get_answer(n):
    #Get the smallest possible length from the optimization list
    l = 1
    for j in range(25):
        if optimization[j] < n:
            l = j
            break
    
    #Keep increasing the length, and looking through all the possible values for the answer
    #Yeah brute force is not the best way, but I learned about this comp. on the friday evening, flew to france in sunday morning. Hour to the deadline, baby!
    while True:
        for i in range(2**l):
             bits = ("{0:0" + str(l) + "b}").format(i)
             bits = [int(s) for s in bits]
             node = gen_tree(bits)
             if numSubSets(node) == n:
                 return bits
        l = l + 1

inp = int(input())    

ans = get_answer(inp)

for b in ans:
    print(b, end="")
print()

Test details

Test 1

Group: 1

Verdict:

input
1

correct output
1

user output
(empty)

Test 2

Group: 1

Verdict:

input
2

correct output
11

user output
0

Test 3

Group: 1

Verdict:

input
3

correct output
10

user output
00

Test 4

Group: 1

Verdict:

input
4

correct output
1111

user output
000

Test 5

Group: 1

Verdict: ACCEPTED

input
5

correct output
110

user output
001

Test 6

Group: 1

Verdict: ACCEPTED

input
6

correct output
101

user output
010

Test 7

Group: 1

Verdict: ACCEPTED

input
7

correct output
1110

user output
0001

Test 8

Group: 1

Verdict: ACCEPTED

input
8

correct output
1100

user output
0011

Test 9

Group: 1

Verdict: ACCEPTED

input
9

correct output
1101

user output
0010

Test 10

Group: 1

Verdict: ACCEPTED

input
10

correct output
1001

user output
0110

Test 11

Group: 2

Verdict: ACCEPTED

input
38

correct output
1101011

user output
0010100

Test 12

Group: 2

Verdict: ACCEPTED

input
13

correct output
11011

user output
00100

Test 13

Group: 2

Verdict: ACCEPTED

input
90

correct output
111001010

user output
000110101

Test 14

Group: 2

Verdict: ACCEPTED

input
25

correct output
110010

user output
001101

Test 15

Group: 2

Verdict: ACCEPTED

input
82

correct output
111001101

user output
000110010

Test 16

Group: 2

Verdict:

input
94

correct output
1100011110

user output
(empty)

Test 17

Group: 2

Verdict:

input
100

correct output
1111001001

user output
(empty)

Test 18

Group: 2

Verdict: ACCEPTED

input
99

correct output
110010010

user output
001101101

Test 19

Group: 2

Verdict: ACCEPTED

input
98

correct output
110110010

user output
001001101

Test 20

Group: 2

Verdict: ACCEPTED

input
92

correct output
100110001

user output
011001110

Test 21

Group: 3

Verdict:

input
1666

correct output
101101100100101

user output
(empty)

Test 22

Group: 3

Verdict:

input
897

correct output
11101001101010

user output
(empty)

Test 23

Group: 3

Verdict:

input
4466

correct output
111101010110100101

user output
(empty)

Test 24

Group: 3

Verdict:

input
4240

correct output
11011001011010101

user output
(empty)

Test 25

Group: 3

Verdict:

input
3089

correct output
1011001010100101

user output
(empty)

Test 26

Group: 3

Verdict:

input
4697

correct output
11010101101010110

user output
(empty)

Test 27

Group: 3

Verdict:

input
4608

correct output
11010110101001010

user output
(empty)

Test 28

Group: 3

Verdict:

input
4625

correct output
111011001100101001

user output
(empty)

Test 29

Group: 3

Verdict:

input
4611

correct output
11010101010101100

user output
(empty)

Test 30

Group: 3

Verdict:

input
4917

correct output
10110100101010110

user output
(empty)

Test 31

Group: 4

Verdict:

input
178555

correct output
1011010110110101010110110

user output
(empty)

Test 32

Group: 4

Verdict:

input
864856

correct output
10111010110110100100101010010

user output
(empty)

Test 33

Group: 4

Verdict:

input
112146

correct output
1101110101011001100100110

user output
(empty)

Test 34

Group: 4

Verdict:

input
741124

correct output
1011010011010101100101011010

user output
(empty)

Test 35

Group: 4

Verdict:

input
511902

correct output
1011010100011010100101001110

user output
(empty)

Test 36

Group: 4

Verdict:

input
920019

correct output
11100100101101010101001101010

user output
(empty)

Test 37

Group: 4

Verdict:

input
933943

correct output
10101011010100100110100111001

user output
(empty)

Test 38

Group: 4

Verdict:

input
973410

correct output
1011010101011010101010101001

user output
(empty)

Test 39

Group: 4

Verdict:

input
954943

correct output
10110110010011010100100110101

user output
(empty)

Test 40

Group: 4

Verdict:

input
911674

correct output
1010110010110101010101010110

user output
(empty)